**OSE SEMINAR 2013** 

# **Reformulation of 0-1 Quadratic Programs**

## Otto Nissfolk

CENTER OF EXCELLENCE IN OPTIMIZATION AND SYSTEMS ENGINEERING ÅBO AKADEMI UNIVERSITY

ÅBO, NOVEMBER 15<sup>th</sup> 2013





## Table of contents

### Problem Formulation

- Coulomb Glass
- ▶ taixxc
- Boolean Least Squares
- ▹ SDP
- Results
  - ⊳ CG
  - ▶ taixxc
  - ⊳ BLS



2 | 21

$$E = k \frac{1}{2} \sum_{i}^{N} \sum_{j \neq i}^{N} \frac{x_i x_j}{r_{ij}} + \sum_{i}^{N} \varepsilon_i x_i$$

where  $r_{ij}$  is the distance between impurities *i* and *j*,  $\varepsilon_i$  is the energy for impurity *i* och  $x_i$  is a binary variable stating if impurity *i* is occupied or not. If *n* impurities are occupied then  $\sum_{i=1}^{N} x_i = n$ .

$$E = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{x} + \mathbf{c}^{\mathsf{T}}\mathbf{x}$$

where element  $M_{ij} = \frac{1}{r_{ij}}$  and  $c_i = \epsilon_i$ .



min 
$$\mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x} + \mathbf{c}^{\mathsf{T}} \mathbf{x}$$
  
subject to  
 $\sum_{i=1}^{n} x_i = \frac{n}{2}$   
 $x_i \in \{0, 1\}$ 















$$T_{rstu} = \max_{v,w \in \{-1,0,1\}} \frac{1}{(r-t+nv)^2 + (s-u+nw)^2}$$
$$f_{ij} = \begin{cases} 1 & \text{if } i \le m \text{ and } j \le m \\ 0 & \text{otherwise} \end{cases}$$
$$d_{ij} = d_{n(r-1)+s n(t-1)+u} = T_{rstu}$$

where (r, s) are the coordinates for *i* and (t, u) are the coordinates for *j* 



min 
$$\mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x} + \mathbf{c}^{\mathsf{T}} \mathbf{x}$$
  
subject to  
 $\sum_{i=1}^{n} x_i = m$   
 $x_i \in \{0, 1\}$ 



$$\min \|Ax - b\|^2$$

# $\min \mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{c}^T \mathbf{x} + \mathbf{k}$

where *Q* is  $A^T A$  and *A* is a random matrix of size  $n \times n$ , *c* is  $-2A^T b$  where *b* is noice and *k* is  $b^T b$ .



 $\min x^T Q x + c^T x$ 

subject to

 $x_i \in \{0,1\}$ 







minimize  $\operatorname{tr}(QX) + c^T x$ subject to Ax = a  $\operatorname{diag}(X) = x$   $\begin{bmatrix} 1 & x^T \\ x & X \end{bmatrix} \ge 0$   $x_i x_j \ge 0 \qquad \forall i, j$   $x_i x_j \ge x_i + x_j - 1 \quad \forall i, j$   $x_i x_j \le x_i \qquad \forall i, j$  $x_i x_j \le x_j \qquad \forall i, j$ 



| Problem | UB      | LB      | Gap   | Time    | SDP LB  | SDP gap | SDP time |
|---------|---------|---------|-------|---------|---------|---------|----------|
| 50      | 117.29  | 116.54  | 0.62% | 2895.8  | 114.72  | 2.18%   | 0.5      |
| 100     | 367.75  | 367.45  | 0.08% | 9468.3  | 363.21  | 1.23%   | 1.0      |
| 150     | 698.90  | 694.00  | 0.70% | 14400.6 | 692.35  | 0.94%   | 2.0      |
| 200     | 1097.12 | 1087.62 | 0.87% | 14400.9 | 1087.39 | 0.89%   | 3.1      |

Table : Average results for CG problems without strengthened SDP



| Problem | UB      | LB      | Gap   | Time    | SDP LB  | SDP gap | SDP time |
|---------|---------|---------|-------|---------|---------|---------|----------|
| 50      | 117.29  | 116.54  | 0.62% | 2895.8  | 114.72  | 2.18%   | 0.5      |
| 100     | 367.75  | 367.45  | 0.08% | 9468.3  | 363.21  | 1.23%   | 1.0      |
| 150     | 698.90  | 694.00  | 0.70% | 14400.6 | 692.35  | 0.94%   | 2.0      |
| 200     | 1097.12 | 1087.62 | 0.87% | 14400.9 | 1087.39 | 0.89%   | 3.1      |

Table : Average results for CG problems without strengthened SDP

| Problem | UB      | LB      | Gap   | Time   | SDP LB  | SDP gap | SDP time |
|---------|---------|---------|-------|--------|---------|---------|----------|
| 50      | 117.29  | 117.29  | 0.00% | 2.9    | 117.27  | 0.02%   | 8.1      |
| 100     | 367.75  | 367.75  | 0.00% | 26.5   | 367.69  | 0.02%   | 8.5      |
| 150     | 698.66  | 698.66  | 0.00% | 170.8  | 698.53  | 0.02%   | 10.0     |
| 200     | 1096.68 | 1096.68 | 0.00% | 4621.8 | 1096.44 | 0.02%   | 14.2     |

Table : Average results for CG problems with strengthened SDP











Figure : Gap for tai36c

Otto Nissfolk: Reformulation of 0-1 Quadratic Programs Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University 15 | 21









## Some references



#### Alain Billionnet, Sourour Elloumi, and Marie-Christine Plateau.

Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The qcr method.

Discrete Appl. Math., 157:1185–1197, March 2009.



#### R.E. Burkard, E. Cela, P.M. Pardalos, and L.S. Pitsoulis.

Handbook of Combinatorial Optimization, volume 3. 1998.



#### C. S. Edwards.

A branch and bound algorithm for the koopmans-beckmann quadratic assignment problem. *Combinatorial Optimization II*, 13:35–52, 1980.



#### Tjalling C. Koopmans and Martin Beckmann.

Assignment problems and the location of economic activities. *Econometrica*, 25(1):pp. 53–76, 1957.



#### É.D. Taillard.

Comparison of iterative searches for the quadratic assignment problem. *Location Science*, 3(2):87 – 105, 1995.



20 | 21

Thank you for listening!

Questions?

