OSE SEMINAR 2013

Reformulation of 0-1 Quadratic Programs

Otto Nissfolk

CENTER OF EXCELLENCE IN
OPTIMIZATION AND SYSTEMS ENGINEERING ÅBO AKADEMI UNIVERSITY

ÅBO, NOVEMBER $15^{\text {th }} 2013$

Table of contents

- Problem Formulation
- Coulomb Glass
\triangleright taixxc
\triangleright Boolean Least Squares
- SDP
- Results
\triangleright CG
\triangleright taixxc
- BLS

$$
E=k \frac{1}{2} \sum_{i}^{N} \sum_{j \neq i}^{N} \frac{x_{i} x_{j}}{r_{i j}}+\sum_{i}^{N} \epsilon_{i} x_{i}
$$

where $r_{i j}$ is the distance between impurities i and j, ϵ_{i} is the energy for impurity i och x_{i} is a binary variable stating if impurity i is occupied or not. If n impurities are occupied then $\sum_{i}^{N} x_{i}=n$.

$$
E=\frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}+\mathbf{c}^{\top} \mathbf{x}
$$

where element $M_{i j}=\frac{1}{r_{i j}}$ and $c_{i}=\epsilon_{i}$.

$\min x^{\top} Q x+c^{\top} x$

subject to

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i}=\frac{n}{2} \\
& x_{i} \in\{0,1\}
\end{aligned}
$$

Otto Nissfolk: Reformulation of 0-1 Quadratic Programs
Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University

Otto Nissfolk: Reformulation of 0-1 Quadratic Programs
Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University

Otto Nissfolk: Reformulation of 0-1 Quadratic Programs
Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University

$$
\begin{aligned}
& T_{r s t u}= \max _{v, w \in\{-1,0,1\}} \frac{1}{(r-t+n v)^{2}+(s-u+n w)^{2}} \\
& f_{i j}= \begin{cases}1 & \text { if } i \leq m \text { and } j \leq m \\
0 & \text { otherwise }\end{cases} \\
& d_{i j}=d_{n(r-1)+\operatorname{sn}(t-1)+u}=T_{r s t u}
\end{aligned}
$$

where (r, s) are the coordinates for i and (t, u) are the coordinates for j

$\min x^{\top} Q x+c^{\top} x$

subject to
$\sum_{i=1}^{n} x_{i}=m$

$$
x_{i} \in\{0,1\}
$$

$$
\min \|A x-b\|^{2}
$$

$$
\min x^{\top} \mathbf{Q} x+\mathbf{c}^{\top} x+k
$$

where Q is $A^{T} A$ and A is a random matrix of size $n \times n, c$ is $-2 A^{T} b$ where b is noice and k is $b^{T} b$.

$$
\begin{gathered}
\min x^{\top} Q x+c^{\top} \mathbf{x} \\
\text { subject to } \\
x_{i} \in\{0,1\}
\end{gathered}
$$

minimize $\operatorname{tr}(Q X)+c^{\top} x$
subject to $A x=a$
$\operatorname{diag}(X)=x$
$\left[\begin{array}{cc}1 & x^{T} \\ x & X\end{array}\right] \geq 0$

$$
\begin{array}{lll}
\operatorname{minimize} & \operatorname{tr}(Q X)+c^{\top} x & \\
\text { subject to } & A x=a & \\
& \operatorname{diag}(X)=x & \\
& {\left[\begin{array}{cc}
1 & x^{\top} \\
x & x
\end{array}\right] \geq 0} & \\
& x_{i} x_{j} \geq 0 & \forall i, j \\
& x_{i} x_{j} \geq x_{i}+x_{j}-1 & \forall i, j \\
& x_{i} x_{j} \leq x_{i} & \forall i, j \\
& x_{i} x_{j} \leq x_{j} & \forall i, j
\end{array}
$$

Results: CG—12|21

Problem	UB	LB	Gap	Time	SDP LB	SDP gap	SDP time
50	117.29	116.54	0.62%	2895.8	114.72	2.18%	0.5
100	367.75	367.45	0.08%	9468.3	363.21	1.23%	1.0
150	698.90	694.00	0.70%	14400.6	692.35	0.94%	2.0
200	1097.12	1087.62	0.87%	14400.9	1087.39	0.89%	3.1

Table: Average results for CG problems without strengthened SDP

Problem	UB	LB	Gap	Time	SDP LB	SDP gap	SDP time
50	117.29	116.54	0.62%	2895.8	114.72	2.18%	0.5
100	367.75	367.45	0.08%	9468.3	363.21	1.23%	1.0
150	698.90	694.00	0.70%	14400.6	692.35	0.94%	2.0
200	1097.12	1087.62	0.87%	14400.9	1087.39	0.89%	3.1

Table: Average results for CG problems without strengthened SDP

Problem	UB	LB	Gap	Time	SDP LB	SDP gap	SDP time
50	117.29	117.29	0.00%	2.9	117.27	0.02%	8.1
100	367.75	367.75	0.00%	26.5	367.69	0.02%	8.5
150	698.66	698.66	0.00%	170.8	698.53	0.02%	10.0
200	1096.68	1096.68	0.00%	4621.8	1096.44	0.02%	14.2

Table : Average results for CG problems with strengthened SDP

CG problems SDP gap

Figure : CG gap

Problem number vs. time

Figure: Solution times for tai36c

Problem number vs. gap

Figure: Gap for tai36c

CPLEX and SDP time for some BLS problems of size 40

CPLEX and SDP time for some BLS problems of size 60

CPLEX and SDP time for some BLS problems of size 80

CPLEX and SDP time for some BLS problems of size 100

Some references

Alain Billionnet, Sourour Elloumi, and Marie-Christine Plateau.

Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The qcr method.
Discrete Appl. Math., 157:1185-1197, March 2009.

R.E. Burkard, E. Cela, P.M. Pardalos, and L.S. Pitsoulis.

Handbook of Combinatorial Optimization, volume 3.
1998.

C. S. Edwards.

A branch and bound algorithm for the koopmans-beckmann quadratic assignment problem. Combinatorial Optimization II, 13:35-52, 1980.

Tjalling C. Koopmans and Martin Beckmann.
Assignment problems and the location of economic activities.
Econometrica, 25(1):pp. 53-76, 1957.
É.D. Taillard.
Comparison of iterative searches for the quadratic assignment problem.
Location Science, 3(2):87-105, 1995.

Thank you for listening!

Questions?

